

Intro to Social Choice Theory

Your Guide: Avrim Blum

Readings: Chapter 9.2

[Credit to Ariel Procaccia for most of 1st half of the presentation]

Social Choice

- General topic: how to aggregate opinions and preferences
- Theoretical study goes back to 1700s (Condorcet, Borda)
- Even interesting contributions by Charles Dodgson (Lewis Carroll)
- Basically: theory of voting, contests, etc.

The Formal Setup

- Have a set V of n voters $\{1, 2, \dots, n\}$.
- Have a set A of m alternatives (candidates) $\{a, b, c, \dots\}$
- Each voter has a ranking over the m alternatives
- Notation: $a >_i b$ means that voter i prefers a to b .
- A mapping from a set of n rankings to a single ranking is called a **social welfare function**, and a mapping from n rankings to a single alternative is called a **social choice function** or **voting rule**.

1	2	3
a	a	c
c	c	b
b	b	a

Some voting rules

Plurality

- Each voter votes for their top choice
- Alternative with the most votes wins
- Used in most elections

1	2	3
a	a	c
c	c	b
b	b	a

Borda Count

- Each voter gives m points to top choice, $m - 1$ to next choice, etc.
- Alternative with the most points wins.
- Proposed by Jean-Charles de Borda in 1770 but perhaps goes back to 1400s.
- Used in: Eurovision, Slovenia (partially)

More voting rules

Veto

- Each voter vetoes (votes against) their lowest choice
- Alternative with the fewest vetoes wins
- Choosing a place to get lunch?

1	2	3
a	a	c
c	c	b
b	b	a

Positional Scoring Rules more generally:

- Defined by a vector (s_1, \dots, s_m) .
- Voter gives s_i points to their i th choice. Alternative with most points wins.
 - Plurality: $(1, 0, 0, \dots, 0)$
 - Borda count: $(m, m - 1, m - 2, \dots)$
 - Veto: $(1, 1, \dots, 1, 0)$

Other kinds of voting rules

- Terminology: we say that *a* beats *b* in a pairwise election if the majority of voters prefer *a* to *b*.

1	2	3
a	a	c
c	c	b
b	b	a

m

n

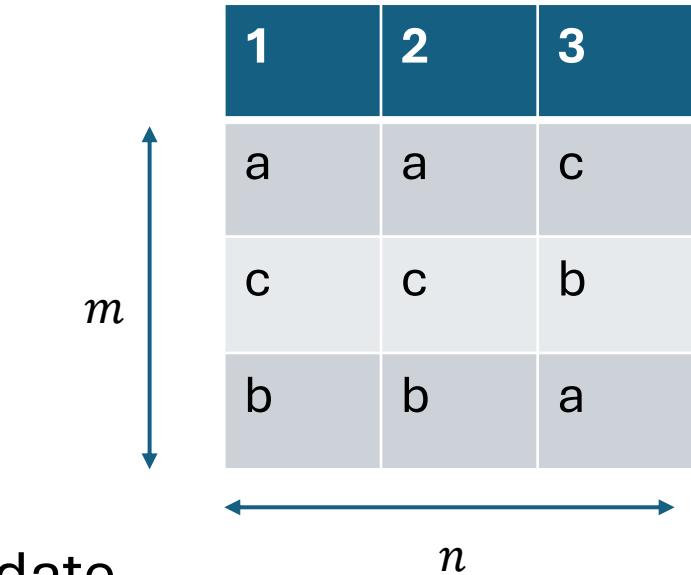
Plurality with runoff:

- In the first round, the two alternatives with the highest plurality score survive (the two with the most votes, where each voter just votes for one candidate)
- Second round is a runoff between those two (only needed if there was no strict majority).
- Used in US in some primary elections.

Other kinds of voting rules

Single Transferable Vote (STV):

- $m - 1$ rounds.
- In each round, voters choose their favorite and the candidate with the fewest votes is eliminated.
- Used in several countries and Cambridge, MA.
- Typically implemented by voters giving a ranking and then the rest is done internally in the system.



1	2	3
a	a	c
c	c	b
b	b	a

STV: EXAMPLE

2 voters	2 voters	1 voter
a	b	c
b	a	d
c	d	b
d	c	a

2 voters	2 voters	1 voter
a	b	c
b	a	b
c	c	a

2 voters	2 voters	1 voter
a	b	b
b	a	a

2 voters	2 voters	1 voter
b	b	b

[Slide from Ariel Procaccia]

Axiomatic approach to analyzing voting methods

Idea:

- Define some reasonable axioms you'd like a voting system to satisfy.
- See which voting systems satisfy them.
- See if it's possible for [any](#) voting system to satisfy them.
- Important impossibility results: [Arrow's theorem](#), [Gibbard-Satterthwaite theorem](#).
- [GS theorem](#): When there are $m \geq 3$ alternatives, for any onto, non-dictatorial voting rule, there will exist scenarios where someone would regret voting truthfully.
- For $m = 2$ candidates, plurality is fine. For $m \geq 3$ candidates, “random dictator” rule is incentive-compatible (everyone writes their favorite choice on a piece of paper, put pieces in a hat, select randomly).

Some axioms

Majority consistency: if a majority of voters rank some alternative x first, then x should be the winner.

- Plurality? Y
- Borda count? N
- Plurality with runoff? Y
- Veto? N
- STV? Y

Some axioms

Condorcet consistency: if x beats every other candidate in a pairwise election (x is a **Condorcet Winner**), then x should win.

Marie Jean Antoine Nicolas de Caritat, Marquis of Condorcet (French: [maʁi ʒã ătwan nikɔla də kaʁita maʁki də kɔ̃dɔʁsɛ]; 17 September 1743 – 29 March 1794), known as **Nicolas de Condorcet**, was a French [philosopher](#) and [mathematician](#).^[2] His ideas, including support for a [free markets](#), [public education](#), [constitutional government](#), and [equal rights](#) for women and people of all races, have been said to embody the ideals of the [Age of Enlightenment](#), of which he has been called the "last witness",^[3] and Enlightenment [rationalism](#). A critic of the constitution proposed by [Marie-Jean Hérault de Séchelles](#) in 1793, the Convention Nationale — and the Jacobin faction in particular — voted to have Condorcet arrested. He died in prison after a period of hiding from the French Revolutionary authorities.

Early years [edit]

Condorcet was born in [Ribemont](#) (in present-day [Aisne](#)), descended from the ancient family of Caritat, who took their title from the town of [Condorcet](#) in [Dauphiné](#), of which

Nicolas de Condorcet

Some axioms

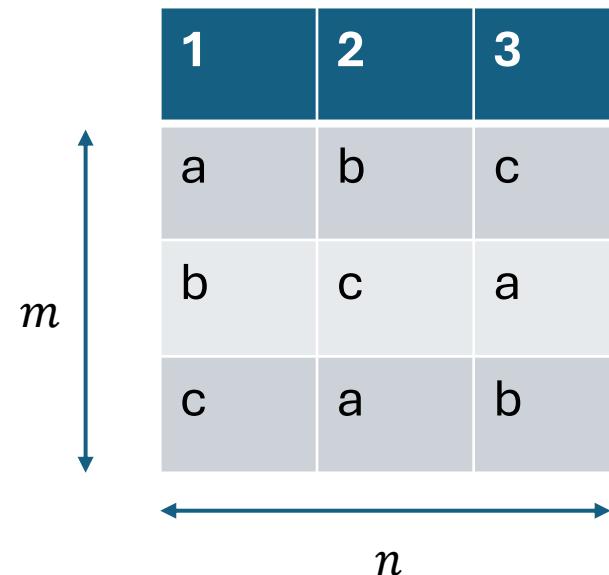
Condorcet consistency: if x beats every other candidate in a pairwise election (x is a Condorcet Winner), then x should win.

Note: there may not be a Condorcet Winner, a fact known as Condorcet's paradox.

1	2	3
a	b	c
b	c	a
c	a	b

m

n



Some axioms

Condorcet consistency: if x beats every other candidate in a pairwise election (x is a Condorcet Winner), then x should win.

Does this example have a Condorcet Winner? Y

Voting systems satisfying CC:

- Plurality? N
- STV? N
- Borda count? N Veto? N ...
- Hmm....

1	2	3
b	c	d
a	a	a
c	d	b
d	b	c

Some axioms

Condorcet consistency: if x beats every other candidate in a pairwise election (x is a Condorcet Winner), then x should win.

Voting rules that satisfy CC:

Copeland:

- Winner is the candidate that beats the most other candidates in pairwise elections

Maximin:

- Winner is candidate that gets at least an α fraction of the vote in all pairwise elections, for α as large as possible.
- Can you see why this satisfies CC?

1	2	3
b	c	d
a	a	a
c	d	b
d	b	c

Some axioms

Condorcet consistency: if x beats every other candidate in a pairwise election (x is a Condorcet Winner), then x should win.

Voting rules that satisfy CC:

Dodgson:

- If there's a Condorcet winner, then they win.
- If not, find the smallest number of swaps between adjacent pairs (bubble-sort style) needed to produce a Condorcet winner, and have that candidate be the winner.
- Charles Dodgson, “A method of taking votes on more than two issues”, 1876.
- Happens to be NP-complete...

1	2	3
b	c	d
a	a	a
c	d	b
d	b	c

A fun example

- Plurality: a
- Borda count: b
- Condorcet winner: c
- STV: d
- Plurality with runoff: e

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	c
c	c	b	b	c	b
d	e	a	d	b	d
e	a	e	a	a	a

[Slide from Ariel Procaccia]

Next: Arrow's theorem and Gibbard-Satterthwaite

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

- **Unanimity:** for any two alternatives x, y , if all voters rank x above y then the output also ranks x above y .
- **IIA:** for any two alternatives x, y , if voters modify their rankings but keep their order of x and y unchanged, then the output order of x and y doesn't change. I.e., adding/removing other “dummy” candidates doesn't change whether x beats y .
- **Dictatorship:** For some i , the output ranking is always i 's ranking.

1	2	3
a	b	c
b	c	a
c	a	b

Intuitive implication: Any reasonable social welfare function will violate IIA.

(Note: we'll be assuming it's a deterministic function)

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

Proof:

- **Lemma 1:** if there is some alternative x such that each voter either ranks x first or ranks x last (they don't have to agree) then the output must have x first or last.
- **Proof:** by contradiction.
 - Suppose there are alternatives y, z such that the output ranks $y > x > z$.
 - Modify each ranking by putting z first if x was last, or 2nd if x was first. This doesn't affect any relative orders of x and z , so by IIA the output should still rank $x > z$.
 - Now, all voters have $z >_i y$, so by unanimity, the output should rank $z > y$.
 - But we didn't change any relative orders of x and y , so by IIA the output should still rank $y > x$, a contradiction.

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

Proof:

- Now, pick some alternative x and consider any set of voters that all rank x last.
- By unanimity, the output must rank x last.
- Now, one at a time, modify each voter's preferences to rank x first, until they all rank x first and (by unanimity) the output must rank x first.
- By Lemma 1, there must have been some voter i such that modifying its preferences caused x to move from last to first.
- We will show that voter i must be a dictator.

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

Proof:

- Modify voters' rankings in an arbitrary way subject to keeping x last/first. Want to show that the output must match i 's ranking (will handle other locations for x later).
- By IIA, this didn't change when x moved from last to first in the output order.

- Pick some $y >_i z$ in i 's ranking (y, z distinct from x).

- Notice that if we move y above x in B , then y must move above x in the output by IIA since it was above x in the output for A . This must also be above z (because x is still above z by IIA).

- So (by IIA), y is above z in the output for A .

	A	B
i	i	i
*	*	x
y	*	*
*	y	y
z	*	*
x	z	z

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

Proof:

- Modify voters' rankings in an arbitrary way subject to keeping x last/first. Want to show that the output must match i 's ranking (will handle other locations for x later).
- By IIA, this didn't change when x moved from last to first in the output order.
- Now, what if x isn't first/last in the various rankings, will y still be above z in the output? Yes, by IIA.
- So, all that remains is to show that i is also a dictator for pairs involving x .

A	B
i	i
*	x
y	*
*	y
z	*
x	z

Arrow's impossibility theorem

Theorem: Any social welfare function (outputs a ranking) for $m \geq 3$ alternatives that satisfies **unanimity** and **independence of irrelevant alternatives** is a **dictatorship**.

Proof:

- Modify voters' rankings in an arbitrary way subject to keeping x last/first. Want to show that the output must match i 's ranking (will handle other locations for x later).
- By IIA, this didn't change when x moved from last to first in the output order.
- Now, what if x isn't first/last in the various rankings, will y still be above z in the output? Yes, by IIA.
- Pick some pair $\{x, y\}$. If we run the above construction using z instead of x , we will find there is some dictator j for the pair $\{x, y\}$.
- But j has to be i since we just saw in moving from A to B that i can impact their order. Done.

A	B
i	i
*	x
y	*
*	y
z	*
x	z

Gibbard-Satterthwaite

Now focus on social choice functions (functions that choose a winner).

f is **incentive-compatible** if no voter would ever prefer to misrepresent their preferences.

- That is if $x = f(\prec_1, \dots, \prec_i, \dots, \prec_n)$ and $y = f(\prec_1, \dots, \prec'_i, \dots, \prec_n)$ then it should be the case that $x \succ_i y$.
- Notice we must also have $x \prec'_i y$. This is also called monotonicity. “If you can change the outcome, it must involve raising the new outcome above the old one”

A misrepresentation that leads to a preferred outcome is called a **strategic manipulation**.

In the case of $m = 2$ candidates, majority voting is incentive-compatible.

Dictatorship: For some voter i , the winner is always i ’s favorite.

Gibbard-Satterthwaite

Theorem: Any social choice function (picks a winner) for $m \geq 3$ alternatives that is **onto** and **incentive compatible** must be a **dictatorship**.

Proof:

- By contradiction. Suppose f is onto, incentive compatible, and not a dictatorship.
- Plan: construct a social welfare function F that satisfies unanimity, IIA, and non-dictatorship, violating Arrow's impossibility theorem. (So, we're doing a reduction)

Gibbard-Satterthwaite

Theorem: Any social choice function (picks a winner) for $m \geq 3$ alternatives that is **onto** and **incentive compatible** must be a **dictatorship**.

Lemma (set-unanimity): If f is onto and incentive-compatible, and if for some subset of alternatives S , every voter ranks S first (all $x \in S$ above all $y \notin S$ even if voters disagree on orders within S), then f must output some alternative in S .

Proof: Let \prec_1, \dots, \prec_n be the given set of preferences.

- Pick some $x \in S$ and let $\prec'_1, \dots, \prec'_n$ be some preferences s.t. $f(\prec'_1, \dots, \prec'_n) = x$. **(by onto)**
- Modify \prec'_1 to \prec_1 , \prec'_2 to \prec_2 , etc. If this ever yields prefs s.t. $f(\prec_1, \dots, \prec_i, \prec'_{i+1}, \dots, \prec'_n) = y \notin S$, then this would violate incentive-compatibility.
 - Because it would mean that voter i with true preferences \prec_i would rather misrepresent as \prec'_i when the others are as above.
- So, this yields the lemma.

Gibbard-Satterthwaite

Theorem: Any social choice function (picks a winner) for $m \geq 3$ alternatives that is **onto** and **incentive compatible** must be a **dictatorship**.

Proof:

- Given f , create social welfare function $F(\prec_1, \dots, \prec_n)$ as follows:
 - For each pair of alternatives x, y : rank them by bringing them to the top of each \prec_i and seeing which of them f would output (must output one of them by Lemma).
 - Need to show this is well-defined (transitive): for any triple $\{x, y, z\}$, one of them should beat the other two.
 - If we bring all three to the top, we know f will output one of them, say x , by Lemma.
 - Then x beats y and z . In particular, suppose for contradiction that z beats x . This means that if one at a time we lower y back to its original location in each voter's ordering, at some point the winner has to switch. This violates IC. (Not monotone)

Gibbard-Satterthwaite

Theorem: Any social choice function (picks a winner) for $m \geq 3$ alternatives that is **onto** and **incentive compatible** must be a **dictatorship**.

Proof:

- Given f , create social welfare function $F(\prec_1, \dots, \prec_n)$ as follows:
 - For each pair of alternatives x, y : rank them by bringing them to the top of each \prec_i and seeing which of them f would output (must output one of them by Lemma).
- **Unanimity:** if every voter ranked x above y , then when we bring them to the top, f must output x by set-unanimity with $S = \{x\}$. So, F ranks x above y .
- **IIA:** ranking of x, y determined by bringing them to top and applying f . If a voter could change this ranking by reordering other alternatives, then f wouldn't be IC.
- **Non-dictatorship:** Since f is non-dictator, for each i , exist prefs such that f does not pick i 's favorite. Say i 's favorite is x but f picks y . By monotonicity, moving x, y to top can't change f (nothing got raised above y). So F ranks y above x too.